Module Stdlib.ListLabelsSource

List operations.

Some functions are flagged as not tail-recursive. A tail-recursive function uses constant stack space, while a non-tail-recursive function uses stack space proportional to the length of its list argument, which can be a problem with very long lists. When the function takes several list arguments, an approximate formula giving stack usage (in some unspecified constant unit) is shown in parentheses.

The above considerations can usually be ignored if your lists are not longer than about 10000 elements.

The labeled version of this module can be used as described in the StdLabels module.

Sourcetype 'a t = 'a list =
  1. | []
  2. | :: of 'a * 'a list

An alias for the type of lists.

Sourceval length : 'a list -> int

Return the length (number of elements) of the given list.

Sourceval compare_lengths : 'a list -> 'b list -> int

Compare the lengths of two lists. compare_lengths l1 l2 is equivalent to compare (length l1) (length l2), except that the computation stops after reaching the end of the shortest list.

  • since 4.05
Sourceval compare_length_with : 'a list -> len:int -> int

Compare the length of a list to an integer. compare_length_with l len is equivalent to compare (length l) len, except that the computation stops after at most len iterations on the list.

  • since 4.05
Sourceval is_empty : 'a list -> bool

is_empty l is true if and only if l has no elements. It is equivalent to compare_length_with l 0 = 0.

  • since 5.1
Sourceval cons : 'a -> 'a list -> 'a list

cons x xs is x :: xs

  • since 4.05
Sourceval hd : 'a list -> 'a

Return the first element of the given list.

  • raises Failure

    if the list is empty.

Sourceval tl : 'a list -> 'a list

Return the given list without its first element.

  • raises Failure

    if the list is empty.

Sourceval nth : 'a list -> int -> 'a

Return the n-th element of the given list. The first element (head of the list) is at position 0.

  • raises Failure

    if the list is too short.

Sourceval nth_opt : 'a list -> int -> 'a option

Return the n-th element of the given list. The first element (head of the list) is at position 0. Return None if the list is too short.

  • since 4.05
Sourceval rev : 'a list -> 'a list

List reversal.

Sourceval init : len:int -> f:(int -> 'a) -> 'a list

init ~len ~f is [f 0; f 1; ...; f (len-1)], evaluated left to right.

  • since 4.06
Sourceval append : 'a list -> 'a list -> 'a list

append l0 l1 appends l1 to l0. Same function as the infix operator @.

  • since 5.1 this function is tail-recursive.
Sourceval rev_append : 'a list -> 'a list -> 'a list

rev_append l1 l2 reverses l1 and concatenates it with l2. This is equivalent to (rev l1) @ l2.

Sourceval concat : 'a list list -> 'a list

Concatenate a list of lists. The elements of the argument are all concatenated together (in the same order) to give the result. Not tail-recursive (length of the argument + length of the longest sub-list).

Sourceval flatten : 'a list list -> 'a list

Same as concat. Not tail-recursive (length of the argument + length of the longest sub-list).

Comparison

Sourceval equal : eq:('a -> 'a -> bool) -> 'a list -> 'a list -> bool

equal eq [a1; ...; an] [b1; ..; bm] holds when the two input lists have the same length, and for each pair of elements ai, bi at the same position we have eq ai bi.

Note: the eq function may be called even if the lists have different length. If you know your equality function is costly, you may want to check compare_lengths first.

  • since 4.12
Sourceval compare : cmp:('a -> 'a -> int) -> 'a list -> 'a list -> int

compare cmp [a1; ...; an] [b1; ...; bm] performs a lexicographic comparison of the two input lists, using the same 'a -> 'a -> int interface as Stdlib.compare:

  • a1 :: l1 is smaller than a2 :: l2 (negative result) if a1 is smaller than a2, or if they are equal (0 result) and l1 is smaller than l2
  • the empty list [] is strictly smaller than non-empty lists

Note: the cmp function will be called even if the lists have different lengths.

  • since 4.12

Iterators

Sourceval iter : f:('a -> unit) -> 'a list -> unit

iter ~f [a1; ...; an] applies function f in turn to [a1; ...; an]. It is equivalent to f a1; f a2; ...; f an.

Sourceval iteri : f:(int -> 'a -> unit) -> 'a list -> unit

Same as iter, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • since 4.00
Sourceval map : f:('a -> 'b) -> 'a list -> 'b list

map ~f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1; ...; f an] with the results returned by f.

Sourceval mapi : f:(int -> 'a -> 'b) -> 'a list -> 'b list

Same as map, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • since 4.00
Sourceval rev_map : f:('a -> 'b) -> 'a list -> 'b list

rev_map ~f l gives the same result as rev (map f l), but is more efficient.

Sourceval filter_map : f:('a -> 'b option) -> 'a list -> 'b list

filter_map ~f l applies f to every element of l, filters out the None elements and returns the list of the arguments of the Some elements.

  • since 4.08
Sourceval concat_map : f:('a -> 'b list) -> 'a list -> 'b list

concat_map ~f l gives the same result as concat (map f l). Tail-recursive.

  • since 4.10
Sourceval fold_left_map : f:('acc -> 'a -> 'acc * 'b) -> init:'acc -> 'a list -> 'acc * 'b list

fold_left_map is a combination of fold_left and map that threads an accumulator through calls to f.

  • since 4.11
Sourceval fold_left : f:('acc -> 'a -> 'acc) -> init:'acc -> 'a list -> 'acc

fold_left ~f ~init [b1; ...; bn] is f (... (f (f init b1) b2) ...) bn.

Sourceval fold_right : f:('a -> 'acc -> 'acc) -> 'a list -> init:'acc -> 'acc

fold_right ~f [a1; ...; an] ~init is f a1 (f a2 (... (f an init) ...)). Not tail-recursive.

Iterators on two lists

Sourceval iter2 : f:('a -> 'b -> unit) -> 'a list -> 'b list -> unit

iter2 ~f [a1; ...; an] [b1; ...; bn] calls in turn f a1 b1; ...; f an bn.

  • raises Invalid_argument

    if the two lists are determined to have different lengths.

Sourceval map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

map2 ~f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn].

  • raises Invalid_argument

    if the two lists are determined to have different lengths.

Sourceval rev_map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

rev_map2 ~f l1 l2 gives the same result as rev (map2 f l1 l2), but is more efficient.

Sourceval fold_left2 : f:('acc -> 'a -> 'b -> 'acc) -> init:'acc -> 'a list -> 'b list -> 'acc

fold_left2 ~f ~init [a1; ...; an] [b1; ...; bn] is f (... (f (f init a1 b1) a2 b2) ...) an bn.

  • raises Invalid_argument

    if the two lists are determined to have different lengths.

Sourceval fold_right2 : f:('a -> 'b -> 'acc -> 'acc) -> 'a list -> 'b list -> init:'acc -> 'acc

fold_right2 ~f [a1; ...; an] [b1; ...; bn] ~init is f a1 b1 (f a2 b2 (... (f an bn init) ...)).

  • raises Invalid_argument

    if the two lists are determined to have different lengths. Not tail-recursive.

List scanning

Sourceval for_all : f:('a -> bool) -> 'a list -> bool

for_all ~f [a1; ...; an] checks if all elements of the list satisfy the predicate f. That is, it returns (f a1) && (f a2) && ... && (f an) for a non-empty list and true if the list is empty.

Sourceval exists : f:('a -> bool) -> 'a list -> bool

exists ~f [a1; ...; an] checks if at least one element of the list satisfies the predicate f. That is, it returns (f a1) || (f a2) || ... || (f an) for a non-empty list and false if the list is empty.

Sourceval for_all2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as for_all, but for a two-argument predicate.

  • raises Invalid_argument

    if the two lists are determined to have different lengths.

Sourceval exists2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as exists, but for a two-argument predicate.

  • raises Invalid_argument

    if the two lists are determined to have different lengths.

Sourceval mem : 'a -> set:'a list -> bool

mem a ~set is true if and only if a is equal to an element of set.

Sourceval memq : 'a -> set:'a list -> bool

Same as mem, but uses physical equality instead of structural equality to compare list elements.

List searching

Sourceval find : f:('a -> bool) -> 'a list -> 'a

find ~f l returns the first element of the list l that satisfies the predicate f.

  • raises Not_found

    if there is no value that satisfies f in the list l.

Sourceval find_opt : f:('a -> bool) -> 'a list -> 'a option

find ~f l returns the first element of the list l that satisfies the predicate f. Returns None if there is no value that satisfies f in the list l.

  • since 4.05
Sourceval find_index : f:('a -> bool) -> 'a list -> int option

find_index ~f xs returns Some i, where i is the index of the first element of the list xs that satisfies f x, if there is such an element.

It returns None if there is no such element.

  • since 5.1
Sourceval find_map : f:('a -> 'b option) -> 'a list -> 'b option

find_map ~f l applies f to the elements of l in order, and returns the first result of the form Some v, or None if none exist.

  • since 4.10
Sourceval find_mapi : f:(int -> 'a -> 'b option) -> 'a list -> 'b option

Same as find_map, but the predicate is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • since 5.1
Sourceval filter : f:('a -> bool) -> 'a list -> 'a list

filter ~f l returns all the elements of the list l that satisfy the predicate f. The order of the elements in the input list is preserved.

Sourceval find_all : f:('a -> bool) -> 'a list -> 'a list

find_all is another name for filter.

Sourceval filteri : f:(int -> 'a -> bool) -> 'a list -> 'a list

Same as filter, but the predicate is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • since 4.11
Sourceval partition : f:('a -> bool) -> 'a list -> 'a list * 'a list

partition ~f l returns a pair of lists (l1, l2), where l1 is the list of all the elements of l that satisfy the predicate f, and l2 is the list of all the elements of l that do not satisfy f. The order of the elements in the input list is preserved.

Sourceval partition_map : f:('a -> ('b, 'c) Either.t) -> 'a list -> 'b list * 'c list

partition_map f l returns a pair of lists (l1, l2) such that, for each element x of the input list l:

  • if f x is Left y1, then y1 is in l1, and
  • if f x is Right y2, then y2 is in l2.

The output elements are included in l1 and l2 in the same relative order as the corresponding input elements in l.

In particular, partition_map (fun x -> if f x then Left x else Right x) l is equivalent to partition f l.

  • since 4.12

Association lists

Sourceval assoc : 'a -> ('a * 'b) list -> 'b

assoc a l returns the value associated with key a in the list of pairs l. That is, assoc a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l.

  • raises Not_found

    if there is no value associated with a in the list l.

Sourceval assoc_opt : 'a -> ('a * 'b) list -> 'b option

assoc_opt a l returns the value associated with key a in the list of pairs l. That is, assoc_opt a [ ...; (a,b); ...] = Some b if (a,b) is the leftmost binding of a in list l. Returns None if there is no value associated with a in the list l.

  • since 4.05
Sourceval assq : 'a -> ('a * 'b) list -> 'b

Same as assoc, but uses physical equality instead of structural equality to compare keys.

Sourceval assq_opt : 'a -> ('a * 'b) list -> 'b option

Same as assoc_opt, but uses physical equality instead of structural equality to compare keys.

  • since 4.05
Sourceval mem_assoc : 'a -> map:('a * 'b) list -> bool

Same as assoc, but simply return true if a binding exists, and false if no bindings exist for the given key.

Sourceval mem_assq : 'a -> map:('a * 'b) list -> bool

Same as mem_assoc, but uses physical equality instead of structural equality to compare keys.

Sourceval remove_assoc : 'a -> ('a * 'b) list -> ('a * 'b) list

remove_assoc a l returns the list of pairs l without the first pair with key a, if any. Not tail-recursive.

Sourceval remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list

Same as remove_assoc, but uses physical equality instead of structural equality to compare keys. Not tail-recursive.

Lists of pairs

Sourceval split : ('a * 'b) list -> 'a list * 'b list

Transform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is ([a1; ...; an], [b1; ...; bn]). Not tail-recursive.

Sourceval combine : 'a list -> 'b list -> ('a * 'b) list

Transform a pair of lists into a list of pairs: combine [a1; ...; an] [b1; ...; bn] is [(a1,b1); ...; (an,bn)].

  • raises Invalid_argument

    if the two lists have different lengths. Not tail-recursive.

Sorting

Sourceval sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Sort a list in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see Array.sort for a complete specification). For example, Stdlib.compare is a suitable comparison function. The resulting list is sorted in increasing order. sort is guaranteed to run in constant heap space (in addition to the size of the result list) and logarithmic stack space.

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

Sourceval stable_sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as sort, but the sorting algorithm is guaranteed to be stable (i.e. elements that compare equal are kept in their original order).

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

Sourceval fast_sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as sort or stable_sort, whichever is faster on typical input.

Sourceval sort_uniq : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as sort, but also remove duplicates.

  • since 4.03
Sourceval merge : cmp:('a -> 'a -> int) -> 'a list -> 'a list -> 'a list

Merge two lists: Assuming that l1 and l2 are sorted according to the comparison function cmp, merge ~cmp l1 l2 will return a sorted list containing all the elements of l1 and l2. If several elements compare equal, the elements of l1 will be before the elements of l2. Not tail-recursive (sum of the lengths of the arguments).

Lists and Sequences

Sourceval to_seq : 'a list -> 'a Seq.t

Iterate on the list.

  • since 4.07
Sourceval of_seq : 'a Seq.t -> 'a list

Create a list from a sequence.

  • since 4.07