• en

Module OpamPackage

module Version : sig
Versions
type t
ABSTRACT type
val of_string : string -> t
Create an abstract value from a string
val to_string : t -> string
Convert an abstract value to a string
val to_json : t -> OpamJson.t
Convert an abstract value to a JSON object
module Set : sig
type elt = t
type t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : elt -> unit -> t -> unit
val fold : elt -> 'a -> 'a -> t -> 'a -> 'a
val for_all : elt -> bool -> t -> bool
val exists : elt -> bool -> t -> bool
val filter : elt -> bool -> t -> t
val partition : elt -> bool -> t -> (t * t)
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val max_elt : t -> elt
val choose : t -> elt
val split : elt -> t -> (t * bool * t)
val map : elt -> elt -> t -> t
auto-map
val choose_one : t -> elt
Return one element. Fail if the set is not a singleton.
val of_list : elt list -> t
Make a set from a list
val to_string : t -> string
Pretty-print a set
val to_json : t -> OpamJson.t
Return a JSON representation of the given set
val find : elt -> bool -> t -> elt
Find an element in the list
module Op : sig
val (++) : t -> t -> t
Infix set union
val (--) : t -> t -> t
Infix set difference
val (%%) : t -> t -> t
Infix set intersection
end
end
module Map : sig
type key = t
type 'a t
val empty : 'a t
val is_empty : 'a t -> bool
val mem : key -> 'a t -> bool
val add : key -> 'a -> 'a t -> 'a t
val singleton : key -> 'a -> 'a t
val remove : key -> 'a t -> 'a t
val merge : key -> 'a option -> 'b option -> 'c option -> 'a t -> 'b t -> 'c t
val compare : 'a -> 'a -> int -> 'a t -> 'a t -> int
val equal : 'a -> 'a -> bool -> 'a t -> 'a t -> bool
val iter : key -> 'a -> unit -> 'a t -> unit
val fold : key -> 'a -> 'b -> 'b -> 'a t -> 'b -> 'b
val for_all : key -> 'a -> bool -> 'a t -> bool
val exists : key -> 'a -> bool -> 'a t -> bool
val filter : key -> 'a -> bool -> 'a t -> 'a t
val partition : key -> 'a -> bool -> 'a t -> ('a t * 'a t)
val cardinal : 'a t -> int
val bindings : 'a t -> (key * 'a) list
val min_binding : 'a t -> (key * 'a)
val max_binding : 'a t -> (key * 'a)
val choose : 'a t -> (key * 'a)
val split : key -> 'a t -> ('a t * 'a option * 'a t)
val find : key -> 'a t -> 'a
val map : 'a -> 'b -> 'a t -> 'b t
val mapi : key -> 'a -> 'b -> 'a t -> 'b t
val to_string : 'a -> string -> 'a t -> string
Pretty-printing
val to_json : 'a -> OpamJson.t -> 'a t -> OpamJson.t
Return a JSON representation of the given map.
val values : 'a t -> 'a list
Return the values in the map.
val keys : 'a t -> key list
Return the keys in the map.
val union : 'a -> 'a -> 'a -> 'a t -> 'a t -> 'a t
A key will be in the union of m1 and m2 if it is appears either m1 or m2, with the corresponding value. If a key appears in both m1 and m2, then the resulting value is built using the function given as argument.
val of_list : (key * 'a) list -> 'a t
Convert an assoc list to a map
end
val compare : t -> t -> int
Compare two versions using the Debian version scheme
end
module Name : sig
Names
type t
ABSTRACT type
val of_string : string -> t
Create an abstract value from a string
val to_string : t -> string
Convert an abstract value to a string
val to_json : t -> OpamJson.t
Convert an abstract value to a JSON object
module Set : sig
type elt = t
type t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : elt -> unit -> t -> unit
val fold : elt -> 'a -> 'a -> t -> 'a -> 'a
val for_all : elt -> bool -> t -> bool
val exists : elt -> bool -> t -> bool
val filter : elt -> bool -> t -> t
val partition : elt -> bool -> t -> (t * t)
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val max_elt : t -> elt
val choose : t -> elt
val split : elt -> t -> (t * bool * t)
val map : elt -> elt -> t -> t
auto-map
val choose_one : t -> elt
Return one element. Fail if the set is not a singleton.
val of_list : elt list -> t
Make a set from a list
val to_string : t -> string
Pretty-print a set
val to_json : t -> OpamJson.t
Return a JSON representation of the given set
val find : elt -> bool -> t -> elt
Find an element in the list
module Op : sig
val (++) : t -> t -> t
Infix set union
val (--) : t -> t -> t
Infix set difference
val (%%) : t -> t -> t
Infix set intersection
end
end
module Map : sig
type key = t
type 'a t
val empty : 'a t
val is_empty : 'a t -> bool
val mem : key -> 'a t -> bool
val add : key -> 'a -> 'a t -> 'a t
val singleton : key -> 'a -> 'a t
val remove : key -> 'a t -> 'a t
val merge : key -> 'a option -> 'b option -> 'c option -> 'a t -> 'b t -> 'c t
val compare : 'a -> 'a -> int -> 'a t -> 'a t -> int
val equal : 'a -> 'a -> bool -> 'a t -> 'a t -> bool
val iter : key -> 'a -> unit -> 'a t -> unit
val fold : key -> 'a -> 'b -> 'b -> 'a t -> 'b -> 'b
val for_all : key -> 'a -> bool -> 'a t -> bool
val exists : key -> 'a -> bool -> 'a t -> bool
val filter : key -> 'a -> bool -> 'a t -> 'a t
val partition : key -> 'a -> bool -> 'a t -> ('a t * 'a t)
val cardinal : 'a t -> int
val bindings : 'a t -> (key * 'a) list
val min_binding : 'a t -> (key * 'a)
val max_binding : 'a t -> (key * 'a)
val choose : 'a t -> (key * 'a)
val split : key -> 'a t -> ('a t * 'a option * 'a t)
val find : key -> 'a t -> 'a
val map : 'a -> 'b -> 'a t -> 'b t
val mapi : key -> 'a -> 'b -> 'a t -> 'b t
val to_string : 'a -> string -> 'a t -> string
Pretty-printing
val to_json : 'a -> OpamJson.t -> 'a t -> OpamJson.t
Return a JSON representation of the given map.
val values : 'a t -> 'a list
Return the values in the map.
val keys : 'a t -> key list
Return the keys in the map.
val union : 'a -> 'a -> 'a -> 'a t -> 'a t -> 'a t
A key will be in the union of m1 and m2 if it is appears either m1 or m2, with the corresponding value. If a key appears in both m1 and m2, then the resulting value is built using the function given as argument.
val of_list : (key * 'a) list -> 'a t
Convert an assoc list to a map
end
val compare : t -> t -> int
Compare two package names
val global_config : t
global configuration package
end
type t
ABSTRACT type
val of_string : string -> t
Create an abstract value from a string
val to_string : t -> string
Convert an abstract value to a string
val to_json : t -> OpamJson.t
Convert an abstract value to a JSON object
module Set : sig
type elt = t
type t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : elt -> unit -> t -> unit
val fold : elt -> 'a -> 'a -> t -> 'a -> 'a
val for_all : elt -> bool -> t -> bool
val exists : elt -> bool -> t -> bool
val filter : elt -> bool -> t -> t
val partition : elt -> bool -> t -> (t * t)
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val max_elt : t -> elt
val choose : t -> elt
val split : elt -> t -> (t * bool * t)
val map : elt -> elt -> t -> t
auto-map
val choose_one : t -> elt
Return one element. Fail if the set is not a singleton.
val of_list : elt list -> t
Make a set from a list
val to_string : t -> string
Pretty-print a set
val to_json : t -> OpamJson.t
Return a JSON representation of the given set
val find : elt -> bool -> t -> elt
Find an element in the list
module Op : sig
val (++) : t -> t -> t
Infix set union
val (--) : t -> t -> t
Infix set difference
val (%%) : t -> t -> t
Infix set intersection
end
end
module Map : sig
type key = t
type 'a t
val empty : 'a t
val is_empty : 'a t -> bool
val mem : key -> 'a t -> bool
val add : key -> 'a -> 'a t -> 'a t
val singleton : key -> 'a -> 'a t
val remove : key -> 'a t -> 'a t
val merge : key -> 'a option -> 'b option -> 'c option -> 'a t -> 'b t -> 'c t
val compare : 'a -> 'a -> int -> 'a t -> 'a t -> int
val equal : 'a -> 'a -> bool -> 'a t -> 'a t -> bool
val iter : key -> 'a -> unit -> 'a t -> unit
val fold : key -> 'a -> 'b -> 'b -> 'a t -> 'b -> 'b
val for_all : key -> 'a -> bool -> 'a t -> bool
val exists : key -> 'a -> bool -> 'a t -> bool
val filter : key -> 'a -> bool -> 'a t -> 'a t
val partition : key -> 'a -> bool -> 'a t -> ('a t * 'a t)
val cardinal : 'a t -> int
val bindings : 'a t -> (key * 'a) list
val min_binding : 'a t -> (key * 'a)
val max_binding : 'a t -> (key * 'a)
val choose : 'a t -> (key * 'a)
val split : key -> 'a t -> ('a t * 'a option * 'a t)
val find : key -> 'a t -> 'a
val map : 'a -> 'b -> 'a t -> 'b t
val mapi : key -> 'a -> 'b -> 'a t -> 'b t
val to_string : 'a -> string -> 'a t -> string
Pretty-printing
val to_json : 'a -> OpamJson.t -> 'a t -> OpamJson.t
Return a JSON representation of the given map.
val values : 'a t -> 'a list
Return the values in the map.
val keys : 'a t -> key list
Return the keys in the map.
val union : 'a -> 'a -> 'a -> 'a t -> 'a t -> 'a t
A key will be in the union of m1 and m2 if it is appears either m1 or m2, with the corresponding value. If a key appears in both m1 and m2, then the resulting value is built using the function given as argument.
val of_list : (key * 'a) list -> 'a t
Convert an assoc list to a map
end
val name : t -> Name.t
Return the package name
val of_string_opt : string -> t option
Return None if nv is not a valid package name
val version : t -> Version.t
Return the version name
val create : Name.t -> Version.t -> t
Create a new pair (name x version)
val name_to_string : t -> string
To fit in the GenericPackage type, for generic display functions
val version_to_string : t -> string
val of_filename : OpamFilename.t -> t option
Guess the package name from a filename. This function extracts name and version from /path/to/$name.$version/opam
val of_dirname : OpamFilename.Dir.t -> t option
Guess the package name from a directory name. This function extracts $name and $version from /path/to/$name.$version/
val of_archive : OpamFilename.t -> t option
Guess the package name from an archive file. This function extract $name and $version from /path/to/$name.$version+opam.tar.gz
val to_map : Set.t -> Version.Set.t Name.Map.t
Convert a set of pairs to a map name -> versions
val keys : 'a Map.t -> Set.t
Returns the keys in a package map as a package set
val versions_of_packages : Set.t -> Version.Set.t
Extract the versions from a collection of packages
val versions_of_name : Set.t -> Name.t -> Version.Set.t
Return the list of versions for a given package
val names_of_packages : Set.t -> Name.Set.t
Extract the naes from a collection of packages
val has_name : Set.t -> Name.t -> bool
Returns true if the set contains a package with the given name
val packages_of_name : Set.t -> Name.t -> Set.t
Return all the packages with the given name
val packages_of_names : Set.t -> Name.Set.t -> Set.t
Return all the packages with one of the given names
val max_version : Set.t -> Name.t -> t
Return the maximal available version of a package name from a set. Raises Not_found if no such package available.
val compare : t -> t -> int
Compare two packages
val equal : t -> t -> bool
Are two packages equal ?
val hash : t -> int
Hash a package
val list : OpamFilename.Dir.t -> Set.t
Return all the package descriptions in a given directory
val prefixes : OpamFilename.Dir.t -> string option Map.t
Return all the package descriptions in the current directory (and their eventual prefixes).
val unknown : Name.t -> Version.t option -> 'a
Unknown package: either the name is unknown, or the version does not exist.
module Parallel : sig
Parallel executions.
module G : sig
type t
Abstract type of graphs
module V : sig
Vertices have type V.t and are labeled with type V.label (note that an implementation may identify the vertex with its label)
type t = t
val compare : t -> t -> int
val hash : t -> int
val equal : t -> t -> bool
type label
val create : label -> t
val label : t -> label
end
type vertex = V.t
module E : sig
Edges have type E.t and are labeled with type E.label. src (resp. dst) returns the origin (resp. the destination) of a given edge.
type t
val compare : t -> t -> int
type vertex = vertex
val src : t -> vertex
Edge origin.
val dst : t -> vertex
Edge destination.
type label
val create : vertex -> label -> vertex -> t
create v1 l v2 creates an edge from v1 to v2 with label l
val label : t -> label
Get the label of an edge.
end
type edge = E.t
val is_directed : bool
Is this an implementation of directed graphs?
val is_empty : t -> bool
val nb_vertex : t -> int
val nb_edges : t -> int
val out_degree : t -> vertex -> int
out_degree g v returns the out-degree of v in g.
Raises Invalid_argument if v is not in g.
val in_degree : t -> vertex -> int
in_degree g v returns the in-degree of v in g.
Raises Invalid_argument if v is not in g.
val mem_vertex : t -> vertex -> bool
val mem_edge : t -> vertex -> vertex -> bool
val mem_edge_e : t -> edge -> bool
val find_edge : t -> vertex -> vertex -> edge
find_edge g v1 v2 returns the edge from v1 to v2 if it exists. Unspecified behaviour if g has several edges from v1 to v2.
Raises Not_found if no such edge exists.
val find_all_edges : t -> vertex -> vertex -> edge list
val succ : t -> vertex -> vertex list
succ g v returns the successors of v in g.
Raises Invalid_argument if v is not in g.
val pred : t -> vertex -> vertex list
pred g v returns the predecessors of v in g.
Raises Invalid_argument if v is not in g.
val succ_e : t -> vertex -> edge list
succ_e g v returns the edges going from v in g.
Raises Invalid_argument if v is not in g.
val pred_e : t -> vertex -> edge list
pred_e g v returns the edges going to v in g.
Raises Invalid_argument if v is not in g.
val fold_vertex : vertex -> 'a -> 'a -> t -> 'a -> 'a
Fold on all vertices of a graph.
val iter_edges : vertex -> vertex -> unit -> t -> unit
Iter on all edges of a graph. Edge label is ignored.
val fold_edges : vertex -> vertex -> 'a -> 'a -> t -> 'a -> 'a
Fold on all edges of a graph. Edge label is ignored.
val iter_edges_e : edge -> unit -> t -> unit
Iter on all edges of a graph.
val fold_edges_e : edge -> 'a -> 'a -> t -> 'a -> 'a
Fold on all edges of a graph.
val map_vertex : vertex -> vertex -> t -> t
Map on all vertices of a graph.
val iter_pred : vertex -> unit -> t -> vertex -> unit
val fold_succ : vertex -> 'a -> 'a -> t -> vertex -> 'a -> 'a
val fold_pred : vertex -> 'a -> 'a -> t -> vertex -> 'a -> 'a
val iter_succ_e : edge -> unit -> t -> vertex -> unit
val fold_succ_e : edge -> 'a -> 'a -> t -> vertex -> 'a -> 'a
val iter_pred_e : edge -> unit -> t -> vertex -> unit
val fold_pred_e : edge -> 'a -> 'a -> t -> vertex -> 'a -> 'a
val create : ?size:int -> unit -> t
create () returns an empty graph. Optionally, a size can be given, which should be on the order of the expected number of vertices that will be in the graph (for hash tables-based implementations). The graph grows as needed, so size is just an initial guess.
val clear : t -> unit
val copy : t -> t
copy g returns a copy of g. Vertices and edges (and eventually marks, see module Mark) are duplicated.
val add_vertex : t -> vertex -> unit
add_vertex g v adds the vertex v to the graph g. Do nothing if v is already in g.
val remove_vertex : t -> vertex -> unit
remove g v removes the vertex v from the graph g (and all the edges going from v in g). Do nothing if v is not in g.
Time complexity for ocamlgraph implementations: O(|V|*ln(D)) for unlabeled graphs and O(|V|*D) for labeled graphs. D is the maximal degree of the graph.
val add_edge : t -> vertex -> vertex -> unit
add_edge g v1 v2 adds an edge from the vertex v1 to the vertex v2 in the graph g. Add also v1 (resp. v2) in g if v1 (resp. v2) is not in g. Do nothing if this edge is already in g.
val add_edge_e : t -> edge -> unit
add_edge_e g e adds the edge e in the graph g. Add also E.src e (resp. E.dst e) in g if E.src e (resp. E.dst e) is not in g. Do nothing if e is already in g.
val remove_edge : t -> vertex -> vertex -> unit
remove_edge g v1 v2 removes the edge going from v1 to v2 from the graph g. If the graph is labelled, all the edges going from v1 to v2 are removed from g. Do nothing if this edge is not in g.
Raises Invalid_argument if v1 or v2 are not in g.
val remove_edge_e : t -> edge -> unit
remove_edge_e g e removes the edge e from the graph g. Do nothing if e is not in g.
Raises Invalid_argument if E.src e or E.dst e are not in g.
val iter_vertex : V.t -> unit -> t -> unit
val iter_succ : V.t -> unit -> t -> V.t -> unit
val has_cycle : t -> bool
val scc_list : t -> V.t list list
val string_of_vertex : V.t -> string
end
val iter : int -> G.t -> pre:G.V.t -> unit -> child:G.V.t -> unit -> post:G.V.t -> unit -> unit
val iter_l : int -> G.vertex list -> pre:G.V.t -> unit -> child:G.V.t -> unit -> post:G.V.t -> unit -> unit
val map_reduce : int -> G.t -> map:G.V.t -> 'a -> merge:'a -> 'a -> 'a -> init:'a -> 'a
val map_reduce_l : int -> G.vertex list -> map:G.V.t -> 'a -> merge:'a -> 'a -> 'a -> init:'a -> 'a
val create : G.V.t list -> G.t
exception Errors of (G.V.t * OpamParallel.error) list * G.V.t list
exception Cyclic of G.V.t list list
end